Solving singular integral equations by using orthogonal polynomials

author

  • Samad Ahdiaghdam Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Iran
Abstract:

In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solution of singular integral equations. The efficiency of the method is illustrated through some examples.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Solving a class of nonlinear two-dimensional Volterra integral equations by using two-dimensional triangular orthogonal functions

In this paper, the two-dimensional triangular orthogonal functions (2D-TFs) are applied for solving a class of nonlinear two-dimensional Volterra integral equations. 2D-TFs method transforms these integral equations into a system of linear algebraic equations. The high accuracy of this method is verified through a numerical example and comparison of the results with the other numerical methods.

full text

Fractional Calculus for Solving Abel’s Integral Equations Using Chebyshev Polynomials

Abstract In this paper, the numerical method for solving Abel’s integral equations is presented. This method is based on fractional calculus. Also, Chebyshev polynomials are utilized to apply fractional properties for solving Abel’s integral equations of the first and second kind. The fractional operator is considered in the sense of RiemannLiouville. Although Abel’s integral equations as singu...

full text

New Stable Numerical Solutions of Singular Integral Equations of Abel Type by Using Normalized Bernstein Polynomials

A new numerical method, based on the normalized Bernstein polynomials for solving singular integral equations of Abel type is presented here in this paper. We construct an othonormal family { } i n i b 0 = of polynomials of degree n from the th n degree Bernstein polynomials n i B and use them as a basis to approximate the known and unknown functions ) (x f and ) (x φ respectively in the Abel’s...

full text

A spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations

In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 4

pages  411- 425

publication date 2018-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023